10 research outputs found

    SANSA - Hybrid Terrestrial-Satellite Backhaul Network: Scenarios, Use cases, KPIs, Architecture, Network and Physical Layer Techniques

    Get PDF
    SANSA (Shared Access terrestrial-satellite backhaul Network enabled by Smart Antennas) is a project funded by the EU under the H2020 program. The main aim of SANSA is to boost the performance of mobile wireless backhaul networks in terms of capacity, energy efficiency and resilience against link failure or congestion while easing the deployment in both rural and urban areas and assuring at the same time an efficient use of the spectrum. This paper provides an overview and the first results of the project and, more specifically, it describes the regulatory environment, the State of The Art of mobile backhauling technologies regarding Ka band, the scenarios, the use cases, and the KPIs along with the SANSA architecture, network (NET), and physical (PHY) layer techniques used to enhance wireless backhauling capabilities

    Minimization of the energy consumption in a Wireless Sensor Network using time-scheduling and clustering algorithms

    No full text
    129 σ.Τα ασύρματα δίκτυα αισθητήρων (Wireless Sensor Networks, WSNs) έχουν αρχίσει να απασχολούν έντονα την επιστημονική κοινότητα τα τελευταία χρόνια, τόσο λόγω της μεγάλης ποικιλίας των εφαρμογών τους, όσο και για τα πολλά ανεξερεύνητα επιστημονικά προβλήματα που θέτουν. Ένα από τα πιο σημαντικά ζητήματα αποτελεί η διαχείριση των ενεργειακών πόρων των κόμβων αισθητήρων που απαρτίζουν αυτά τα δίκτυα, αφού είναι εφοδιασμένοι με μικρής χωρητικότητας μπαταρίες λόγω του μικρού μεγέθους τους, των οποίων η αντικατάσταση είναι αδύνατη ή δεν συμφέρει. Ανάμεσα στις διάφορες λειτουργίες που επιτελούν οι κόμβοι αισθητήρων, η μεταξύ τους επικοινωνία είναι από τις πιο απαιτητικές από άποψη κατανάλωσης. Γι’ αυτό το λόγο, έχουν προταθεί διάφορες λύσεις τόσο για την αποδοτικότερη εκμετάλλευση των ενεργειακών τους αποθεμάτων, όσο και για τη μείωση της κατανάλωσης των αναγκών ασύρματης επικοινωνίας των κόμβων. Το αντικείμενο αυτής της διπλωματικής εργασίας είναι η μείωση της κατανάλωσης ενέργειας των κόμβων αισθητήρων ενός WSN μέσω του χρονοπρογραμματισμού της επικοινωνίας τους και της ομαδοποίησης τους σε συστάδες. Πιο συγκεκριμένα, δημιουργήθηκε αλγόριθμος χρονοπρογραμματισμού της επικοινωνίας, ο οποίος γίνεται με βάση τις απώλειες του καναλιού, δηλαδή τις απώλειες διάδοσης και τις διαλείψεις σκίασης, και χρησιμοποιεί τη θεωρία βέλτιστης παύσης για τον προσδιορισμό της βέλτιστης χρονικής στιγμής πραγματοποίησης της επικοινωνίας. Επιπρόσθετα, το δίκτυο οργανώνεται σε συστάδες για περεταίρω μείωση της κατανάλωσης ενέργειας. Μετά την κατασκευή του αλγορίθμου, αναπτύχθηκε πρόγραμμα προσομοίωσης στο περιβάλλον Matlab, ώστε να επαληθευτεί η θεωρητική του ανάλυση. Επιπλέον, γίνεται σύγκριση του αλγορίθμου που κατασκευάστηκε με δύο άλλους αλγορίθμους χρονοπρογραμματισμού, οι οποίοι χρησιμοποιούν διαφορετικά κριτήρια για τον προγραμματισμό της επικοινωνίας των κόμβων. Με βάση τα αποτελέσματα που προκύπτουν, αποδεικνύεται ότι ο προτεινόμενος αλγόριθμος μειώνει σημαντικά την κατανάλωση ενέργειας των ασύρματων κόμβων αισθητήρων.Wireless sensor networks (WSNs) have drawn a lot of the scientific interest during the last years, not only because of their wide range of applications, but also due to the numerous unsolved issues that they pose. One of the most challenging aspects is the efficient utilization of the energy supplies of the sensor nodes that form the network, because, due to their small size, they are equipped with small batteries that are impossible or impractical to change. The communication between the nodes of the network is one of the most energy consuming functions that they have to support. Therefore, there has been a lot of research concerning energy efficient communication schemes based on various techniques, such as routing and clustering. This diploma thesis discusses the minimization of the wireless sensor nodes energy consumption through communication time-scheduling and clustering techniques. More specifically, a communication scheduling scheme based on channel losses, which consist both of the path losses and shadow fading, is proposed. The proposed scheduling scheme uses the optimal stopping theory in order to find the best time instant to communicate. Additionally, the WSN is organized in clusters for the further reduction of the energy consumption. Apart from the theoretical analysis of the algorithm, simulations in Matlab are conducted, in order to confirm the expected outcome. Lastly, the simulation results are compared to those of two different scheduling schemes. Based on the simulations results, the nodes achieve significantly lower energy consumption by using the proposed scheduling scheme.Γεωργία Χ. Ποζιοπούλο

    Satellite Support for Enhanced Mobile Broadband Content Delivery in 5G

    No full text
    Satellite communication has recently been included as one of the enabling technologies for 5G backhauling, in particular for the delivery of bandwidth-demanding enhanced mobile broadband (eMBB) application data in 5G. In this paper we introduce a 5G-oriented network architecture empowered by satellite communications for supporting emerging mobile video delivery, which is investigated in the EU 5GPPP Phase 2 SAT5G Project. Two complementary use cases are introduced, including (1) the use of satellite links to support offline multicasting and caching of popular video content at 5G mobile edge, and (2) real-time prefetching of DASH (Dynamic Adaptive Streaming over HTTP) video segments by 5G mobile edge through satellite links. In both cases, the objective is to localize content objects close to consumers in order to achieve assured Quality of Experiences (QoE) in 5G content applications. In the latter case, in order to circumvent the large end-to-end propagation delay of satellite links, testbed based experiments have been carried out to identify specific prefetching policies to be enforced by the Multiaccess computing server (MEC) for minimizing user perceived disruption during content consumption sessions

    Use Cases and Scenarios of 5G Integrated Satellite-Terrestrial Networks for Enhanced Mobile Broadband: The SaT5G Approach

    No full text
    This paper presents initial results available from the European Commission Horizon 2020 5G Public Private Partnership Phase 2 project “SaT5G” (Satellite and Terrestrial Network for 5G). After describing the concept, objectives, challenges, and research pillars addressed by the SaT5G project, this paper elaborates on the selected use cases and scenarios for satellite communications positioning in the 5G usage scenario of enhanced mobile broadband. This paper presents initial results available from the SaT5G project. It describes the concept, objectives, challenges, and research pillars addressed by the SaT5G project. It also defines how satellite can be seamlessly integrated into the eMBB usage scenario for 5G, by elaborating on the SaT5G use cases and scenarios for satellite positioning in eMBB

    Use cases and scenarios of 5G integrated satellite‐terrestrial networks for enhanced mobile broadband: The SaT5G approach

    No full text
    This paper presents initial results available from the European Commission Horizon 2020 5G Public Private Partnership Phase 2 project “SaT5G” (Satellite and Terrestrial Network for 5G).1 After describing the concept, objectives, challenges, and research pillars addressed by the SaT5G project, this paper elaborates on the selected use cases and scenarios for satellite communications positioning in the 5G usage scenario of enhanced mobile broadband

    QoE-Assured Live Streaming via Satellite Backhaul in 5G Networks

    No full text
    Satellite communication has recently been included as one of the key enabling technologies for 5G backhauling, especially for the delivery of bandwidth-demanding enhanced mobile broadband (eMBB) applications in 5G. In this paper, we present a 5G-oriented network architecture that is based on satellite communications and multi-access edge computing (MEC) to support eMBB applications, which is investigated in the EU 5GPPP Phase-2 SaT5G project. We specifically focus on using the proposed architecture to assure Quality-of-Experience (QoE) of HTTP-based live streaming users by leveraging satellite links, where the main strategy is to realise transient holding and localization of HTTP-based (e.g., MPEG-DASH or HTTP Live Streaming) video segments at 5G mobile edge while taking into account the characteristics of satellite backhaul link. For the very first time in the literature, we carried out experiments and systematically evaluated the performance of live 4K video streaming over a 5G core network supported by a live geostationary satellite backhaul, which validates its capability of assuring live streaming users’ QoE under challenging satellite network scenarios

    Satellite use cases and scenarios for 5G eMBB

    No full text
    This chapter presents initial results available from the European Commission H2020 5G PPP Phase 2 project SaT5G (Satellite and Terrestrial Network for 5G) [1]. It specifically elaborates on the selected use cases and scenarios for satellite communications (SatCom) positioning in the 5G usage scenario of eMBB (enhanced mobile broadband), which appears the most commercially attractive for SatCom. After a short introduction to the satellite role in the 5G ecosystem and the SaT5G project, the chapter addresses the selected satellite use cases for eMBB by presenting their relevance to the key research pillars (RPs), their relevance to key 5G PPP key performance indicators (KPIs), their relevance to the 3rd Generation Partnership Project (3GPP) SA1 New Services and Markets Technology Enablers (SMARTER) use case families, their relevance to key 5G market verticals, and their market size assessment. The chapter then continues by providing a qualitative high-level description of multiple scenarios associated to each of the four selected satellite use cases for eMBB. Useful conclusions are drawn at the end of the chapter

    Use cases and scenarios of 5G integrated satellite‐terrestrial networks for enhanced mobile broadband: The SaT5G approach

    No full text
    This paper presents initial results available from the European Commission Horizon 2020 5G Public Private Partnership Phase 2 project “SaT5G” (Satellite and Terrestrial Network for 5G).1 After describing the concept, objectives, challenges, and research pillars addressed by the SaT5G project, this paper elaborates on the selected use cases and scenarios for satellite communications positioning in the 5G usage scenario of enhanced mobile broadband

    QoE-Assured Live Streaming via Satellite Backhaul in 5G Networks

    Get PDF
    Satellite communication has recently been included as one of the key enabling technologies for 5G backhauling, especially for the delivery of bandwidth-demanding enhanced mobile broadband (eMBB) applications in 5G. In this paper, we present a 5G-oriented network architecture that is based on satellite communications and multi-access edge computing to support eMBB applications, which is investigated in the EU 5GPPP phase-2 satellite and terrestrial network for 5G project. We specifically focus on using the proposed architecture to assure quality-of-experience (QoE) of HTTP-based live streaming users by leveraging satellite links, where the main strategy is to realize transient holding and localization of HTTP-based (e.g., MPEG-DASH or HTTP live streaming) video segments at 5G mobile edge while taking into account the characteristics of satellite backhaul link. For the very first time in the literature, we carried out experiments and systematically evaluated the performance of live 4K video streaming over a 5G core network supported by a live geostationary satellite backhaul, which validates its capability of assuring live streaming users' QoE under challenging satellite network scenarios
    corecore